sec(x^5+y^5/x^5-y^5) then show dy/dx=y/x
Answers
The proof is given below
Step-by-step explanation:
Given
.............. (1)
Differentiating both sides w.r.t. x
(putting value of from eq (1))
(Proved)
Hope this answer is helpful.
Know More:
Q: If e^y (x+1) =1 then show that dy/dx = -e^y.
Click Here: https://brainly.in/question/3102659
Q: Siny=xsin(a+y) then prove dy/dx= sina/(1-2xcosa+a^2)
Click Here: https://brainly.in/question/5186653
dy/dx = y/x proved
Step-by-step explanation:
Given: Sec (x^5 + y^5 /x^5 - y^5 ) = a
So Cos (x^5 - y^5 /x^5 + y^5 ) = a
(x^5 - y^5 /x^5 + y^5 ) = Cos⁻¹ a
x^5 - y^5 = Cos⁻¹ a (x^5 + y^5)
(1-Cos⁻¹ a) x^5 = (1+Cos⁻¹ a) y^5 -----------(1)
x^5 / y^5 = (1+Cos⁻¹ a) / (1-Cos⁻¹ a) ------(2)
Differentiating, we get:
(1+Cos⁻¹ a) 5y^4 dy/dx = (1-Cos⁻¹ a) 5x^4
dy/dx = (1-Cos⁻¹ a) 5x^4 / (1+Cos⁻¹ a) 5y^4
dy/dx = (1-Cos⁻¹ a) x^4 / (1+Cos⁻¹ a) y^4
dy/dx = (1-Cos⁻¹ a) x^5 / (1+Cos⁻¹ a) y^5 * y/x
dy/dx = (1-Cos⁻¹ a) x^5 / (1+Cos⁻¹ a) y^5 * y/x
Substituting from equation 2, we get:
dy/dx = (1-Cos⁻¹ a) (1+Cos⁻¹ a)/ (1-Cos⁻¹ a)(1+Cos⁻¹ a) y^5 * y/x
Therefore dy/dx = y/x. Hence proved.