sec x + tan x = k then show that sin x = k^2 - 1 / k^2 + 1
Answers
Answered by
1
secx+tanx=k
[1/cosx+sinx/cosx]=k
(1+sinx)/cosx=k
(1+sinx)=kcosx
(1+sinx)²=k²cos²k
1+2sinx+sin²x=k²(1-sin²x)
1+2sinx+sin²x=k²-k²sin²x
(k²+1)sin²x+2sinx+1-k²=0
use the quadratic formula to solve:
sinx=t
(k²+1)t²+2t+1-k²=0
-2±√(2)²-4(k²+1)(1-k²) / 2k²+2
-2±√4k⁴/ 2k²+2 =>-2±2k² / 2k²+2 =>-1±k² / k²+1 =>
-1-k² / k²+1 or -1+k² / k²+1
[1/cosx+sinx/cosx]=k
(1+sinx)/cosx=k
(1+sinx)=kcosx
(1+sinx)²=k²cos²k
1+2sinx+sin²x=k²(1-sin²x)
1+2sinx+sin²x=k²-k²sin²x
(k²+1)sin²x+2sinx+1-k²=0
use the quadratic formula to solve:
sinx=t
(k²+1)t²+2t+1-k²=0
-2±√(2)²-4(k²+1)(1-k²) / 2k²+2
-2±√4k⁴/ 2k²+2 =>-2±2k² / 2k²+2 =>-1±k² / k²+1 =>
-1-k² / k²+1 or -1+k² / k²+1
Answered by
1
hello users .....
//////////////////////////////////////
we have given that :-
sec x + tan x = k
we have to show that :-
sin x = (k² -1) / (k² +1)
solution:-
we know that :
sec²x - tan²x = 1
Here,
sec x + tan x = k
=> tan x = ( k - sec x )
=> tan²x = (k - sec x )²
.................... squaring on both side............
=> tan²x = (k² +sec²x - 2k sec x )
=> sec²x - tan²x = 2k sec x - k²
=> 1 + k² = 2k sec x
......( sec²x - tan²x = 1 ) ....
=> (1 +k²) / 2k = sec x
=> cos x = 1 / sec x = 2k / (k²+1)
now,
we know that:-
sin x = √(1-cos²x)
here,
sin x = √[ 1 - { (2k)²/ (k²+1)² } ]
=> √ [ { (k² +1)² - 4k² } / (k²+1)² ]
......(taking L.C.M ).........
=> √ [ (k² +1²+2k² - 4k² ) / (k²+1)² ]
=> √ [ (k² +1² - 2k²) / (k²+1)² ]
=> √ (k²-1)² / (k² +1)²
=> (k² -1) / (k²+1)
Hence;
sin x = (k²-1) / (k²+1)
///////////////////////////////////////////////////////////
⭐✡ hope it helps ✡⭐
//////////////////////////////////////
we have given that :-
sec x + tan x = k
we have to show that :-
sin x = (k² -1) / (k² +1)
solution:-
we know that :
sec²x - tan²x = 1
Here,
sec x + tan x = k
=> tan x = ( k - sec x )
=> tan²x = (k - sec x )²
.................... squaring on both side............
=> tan²x = (k² +sec²x - 2k sec x )
=> sec²x - tan²x = 2k sec x - k²
=> 1 + k² = 2k sec x
......( sec²x - tan²x = 1 ) ....
=> (1 +k²) / 2k = sec x
=> cos x = 1 / sec x = 2k / (k²+1)
now,
we know that:-
sin x = √(1-cos²x)
here,
sin x = √[ 1 - { (2k)²/ (k²+1)² } ]
=> √ [ { (k² +1)² - 4k² } / (k²+1)² ]
......(taking L.C.M ).........
=> √ [ (k² +1²+2k² - 4k² ) / (k²+1)² ]
=> √ [ (k² +1² - 2k²) / (k²+1)² ]
=> √ (k²-1)² / (k² +1)²
=> (k² -1) / (k²+1)
Hence;
sin x = (k²-1) / (k²+1)
///////////////////////////////////////////////////////////
⭐✡ hope it helps ✡⭐
Similar questions