sec²θ+cosec²θ =sec²θ*cosec²θ,Prove it
Answers
Answered by
8
= sec²θ + cosec²θ
We know, secα = 1/cosα and cosecα = 1/sinα , use here
= 1/cos²θ + 1/sin²θ
= (sin²θ + cos²θ)/cos²θ.sin²θ
As you know, sin²α + cos²α = 1 from Trigonometric identity.
so, sin2θ + cos²θ = 1
= 1/cos²θ.sin²θ = (1/cosθ)²(1/sinθ)²
= (secθ)²(cosecθ)²
= sec²θcosec²θ =
We know, secα = 1/cosα and cosecα = 1/sinα , use here
= 1/cos²θ + 1/sin²θ
= (sin²θ + cos²θ)/cos²θ.sin²θ
As you know, sin²α + cos²α = 1 from Trigonometric identity.
so, sin2θ + cos²θ = 1
= 1/cos²θ.sin²θ = (1/cosθ)²(1/sinθ)²
= (secθ)²(cosecθ)²
= sec²θcosec²θ =
Answered by
2
Answer:
= sec²θ + cosec²θ
We know, secα = 1/cosα and cosecα = 1/sinα , use here
= 1/cos²θ + 1/sin²θ
= (sin²θ + cos²θ)/cos²θ.sin²θ
As you know, sin²α + cos²α = 1 from Trigonometric identity.
so, sin2θ + cos²θ = 1
= 1/cos²θ.sin²θ = (1/cosθ)²(1/sinθ)²
= (secθ)²(cosecθ)²
= sec²θcosec²θ =
Step-by-step explanation:
Similar questions