Math, asked by yash1207, 1 year ago

(sec²A - 1) cot²A = 1

Answers

Answered by Anonymous
4
⇒ ( sec²A - 1 ) cot²A = 1

We know that, 

( sec²A - tan²A = 1 )

( ∴ sec²A - 1 = tan²A ).

By substituting this value,

⇒ ( tan²A ) cot²A = 1

⇒ ( 1 / cot²A ) cot²A = 1

 ∴ 1 = 1.

Proved.
Answered by gunjanbaidyasl
1

Answer:

(sec²A - 1) cot²A = 1

Step-by-step explanation:

To proof : (sec²A - 1) cot²A = 1

Concept :

  • tan A = Sin A / Cos A
  • cot A = Cos A / Sin A    
  • (sec²A - 1) = tan^{2}A

Proof :

Given, L.H.S. = (sec²A - 1) cot²A

          We know, (sec²A - 1) = tan^{2}A

          So, L.H.S = tan^{2}A X cot^{2}A                            (tan A = Sin A / Cos A)

                         =   (\frac{Sin^{2}A }{Cos^{2}A } )( \frac{Cos^{2}A }{Sin^{2}A })                          (cot A = Cos A / Sin A)

                        = 1 = R.H.S

                        Hence, proved.

#SPJ3

Similar questions