Math, asked by harshraj70899, 6 hours ago

sec2theta-tan2theta =tan(π/4-theta)​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:sec2\theta - tan2\theta

\rm \:  =  \: \dfrac{1}{cos2\theta}  - \dfrac{sin2\theta}{cos2\theta}

\rm \:  =  \: \dfrac{1 - sin2\theta}{cos2\theta}

We know,

\boxed{\tt{ cos\bigg[\dfrac{\pi}{2} -  x\bigg] = sinx}} \:  \: and \:  \: \boxed{\tt{ sin\bigg[\dfrac{\pi}{2} -  x\bigg] = cosx}}

So, using this, we get

\rm \:  =  \: \dfrac{1 - cos\bigg[\dfrac{\pi}{2} -2\theta\bigg]}{sin\bigg[\dfrac{\pi}{2} - 2\theta\bigg]}

Let assume that

\red{\rm :\longmapsto\:\boxed{\tt{ \bigg[\dfrac{\pi}{2} - 2\theta\bigg] =2 y \:  \: \rm \implies\:y = \bigg[\dfrac{\pi}{4} - \theta\bigg]}}}

So, above can be rewritten as

\rm \:  =  \: \dfrac{1 - cos2y}{sin2y}

\rm \:  =  \: \dfrac{ {2sin}^{2}y}{2 \: siny \: cosy}

\rm \:  =  \: \dfrac{siny}{cosy}

\rm \:  =  \: tany

\rm \:  =  \: tan\bigg[\dfrac{\pi}{4} - \theta \bigg]

Hence,

\red{\rm :\longmapsto\: \boxed{\tt{ \: sec2\theta - tan2\theta  =  \: tan\bigg[\dfrac{\pi}{4} - \theta \bigg] \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\tt{ sin2x = 2 \: sinx \: cosx \:  =  \frac{2tanx}{1 +  {tan}^{2} x}}}

\boxed{\tt{ tan2x =  \frac{2tanx}{1  -   {tan}^{2} x}}}

\boxed{\tt{ cos2x =  {cos}^{2}x -  {sin}^{2}x =  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2} x} \: }}

\boxed{\tt{ cos2x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1 \: }}

\boxed{\tt{ sin3x = 3sinx -  {4sin}^{3}x}}

\boxed{\tt{ cos3x =  {4cos}^{3}x - 3cosx}}

\boxed{\tt{ tan3x =  \frac{3tanx -  {tan}^{3}x }{1 -  {3tan}^{2}x }}}

Similar questions