Math, asked by pritam20ps05, 11 months ago

sec²x - 2tanx = 0
find value of x.​

Answers

Answered by Anonymous
7

AnswEr :

x could be π/4 or 3π/4

Given,

 \sf \:  {sec}^{2} x - 2tan \: x = 0

But sec²x = 1 + tan²x

 \longrightarrow \sf  {tan}^{2} x - 2tan \: x + 1 = 0 \\  \\  \longrightarrow \sf \: (tan \: x) {}^{2} - 2(tan \: x)(1)  + (1) {}^{2}  = 0 \\  \\  \longrightarrow \sf \:( tan \: x -   1) {}^{2}  = 0 \\  \\  \longrightarrow \:  \sf \: tan \: x = 1 \\  \\  \longrightarrow \sf \:  tan \: x = tan \:  \dfrac{\pi}{4}  \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf \: x =  \dfrac{\pi}{4}}}

Also,

 \sf \: tan \: x = tan(\pi -  \dfrac{\pi}{4} ) \\  \\  \longrightarrow \sf \: tan \: x = tan( \dfrac{3\pi}{ 4} )  \\  \\ \longrightarrow \: \boxed{ \boxed{ \sf \: x =  \dfrac{3\pi}{4}}}

General Solution

 \large{ \sf \: x = n \pi + \dfrac{\pi}{4}}

Similar questions