sec⁴θ(1−sin⁴θ)−2tan²θ=1
Answers
Answered by
1
Answer:
L.H.S. = sec ⁴θ (1 - sin⁴θ) - 2 tan²θ
= sec⁴θ - sec⁴θsin⁴θ - 2tan²θ
= sec⁴θ - sinθ⁴/cos⁴θ - 2tan²θ
= sec⁴θ - tan⁴θ - 2tan²θ
= (sec²θ + tan²θ) (sec²θ - tan²θ) - - 2tan²θ[a² - b² = (a + b)(a - b)] [ Using identity of tan²θ + 1 = sec²θ ]
= (sec²θ + tan²θ) (1) - 2tan²θ
= sec²θ - tan²θ
=) 1 = RHS [Using identity of tan²θ + 1 = sec²θ]
Step-by-step explanation:
pls mark as brainliest
Similar questions