(sec8A-1)/(sec4A-1)=tan8A/tan2A
Answers
Answered by
4
Step-by-step explanation:
(SEC8A -1)/SEC4A-1 = TAN8A/TAN2A
SECX =1/COSX
SO
LHS = (1-COS8A)COS4A/(1-COS4A)COS8A
COS8A=1-2SIN24A
COS4A =1-2SIN22A
AFTER PUTTING THESE
LHS = (SIN24A)COS4A/(SIN22A)COS8A
= (2SIN4ACOS4A)SIN4A/2SIN22ACOS8A (multiplying dividing by 2)
2SIN4ACOS4A =COS8A
SO
LHS =(SIN8A)SIN4A/(2SIN22A)COS8A =(TAN8A)SIN4A/2SIN22A
SIN4A = 2SIN2ACOS2A
SO
LHS =(TAN8A)COS2A/SIN2A=TAN8A/TAN2A = RHS
HENCE PROVED
Similar questions