(secA -cosA) (cota + tan A) - tam A sect.
Answers
Question :
Solution :
In the equation ,
First let us solve LHS ,
We know that ,
Taking LCM ;
We know that ,
Now ,
Answer:
Question :
\begin{gathered} \\ \bf( sec A - cos A)( cot A + \tan A) = ( tan A. sec A) \\ \end{gathered}
(secA−cosA)(cotA+tanA)=(tanA.secA)
Solution :
In the equation ,
\bf{(secA-cosA)(cotA+tanA)=LHS}(secA−cosA)(cotA+tanA)=LHS
\bf{tanAsecA=RHS}tanAsecA=RHS
First let us solve LHS ,
We know that ,
\bf{\dfrac{1}{cosA}=secA}
cosA
1
=secA
\bf{\dfrac{1}{tanA}=cotA}
tanA
1
=cotA
\begin{gathered} \\ \longrightarrow \bf \bigg( \frac{1 - {cos}^{2}A }{cosA} \bigg) \bigg( \frac{1 - {tan}^{2}A }{tanA} \bigg) \\ \\ \end{gathered}
⟶(
cosA
1−cos
2
A
)(
tanA
1−tan
2
A
)
Taking LCM ;
\begin{gathered} \\ \longrightarrow \bf \bigg( \frac{1 - {cos}^{2} A}{cosA} \bigg) \bigg( \frac{1 + {tan}^{2}A }{tanA} \bigg) \\ \end{gathered}
⟶(
cosA
1−cos
2
A
)(
tanA
1+tan
2
A
)
We know that ,
\bf{1-{cos}^ 2A={sin}^2A}1−cos
2
A=sin
2
A
\bf{1+{tan}^2 A= {sec}^2 A}1+tan
2
A=sec
2
A
\begin{gathered} \\ \longrightarrow \bf \bigg( \frac{ {sin}^{2} A}{cosA} \bigg) \bigg( \frac{ {sec}^{2} A}{tanA}\bigg) \\ \\ \end{gathered}
⟶(
cosA
sin
2
A
)(
tanA
sec
2
A
)
Now ,
\bf{tanA=\dfrac{sinA}{cosA}}tanA=
cosA
sinA
\bf{{sec}^2 A=\dfrac{1}{{cos}^2 A}}sec
2
A=
cos
2
A
1
\begin{gathered} \\ \longrightarrow \bf \bigg( \frac{sin {}^{2} A}{cosA} \bigg) \bigg( \frac{ \frac{ 1}{cos {}^{2}A } }{ \frac{sinA}{cosA} } \bigg) \\ \\ \end{gathered}
⟶(
cosA
sin
2
A
)(
cosA
sinA
cos
2
A
1
)
\begin{gathered} \\ \longrightarrow \bf \bigg( \frac{{sin}^{2}A }{cosA} \bigg)\bigg( \frac{ 1}{ {cos}^{2}A } \times \frac{cosA}{sinA} \bigg) \\ \\ \end{gathered}
⟶(
cosA
sin
2
A
)(
cos
2
A
1
×
sinA
cosA
)
\begin{gathered} \\ \longrightarrow \bf \: \frac{sinA}{cosA} \times \frac{1}{cosA} \\ \\ \end{gathered}
⟶
cosA
sinA
×
cosA
1
\begin{gathered} \\ \longrightarrow \bf \: tanA.secA \\ \\ \end{gathered}
⟶tanA.secA
\begin{gathered} \\ \longrightarrow \bf \: RHS\end{gathered}
⟶RHS