Math, asked by Anonymous, 7 months ago

secA divided by tanA + cotA is equal to?​

Answers

Answered by jerophin
0

Answer:

sinA

Step-by-step explanation:

secA/(tanA+cotA)

=(1/cosA) /{(sinA/cosA) +(cosA/sinA) }

=(1/cosA) /{(sin^2A+cos^2A)/(sinAcosA)}

=(1×(sinAcosA))/(1×cosA)

(since sin^2A+cos^2A=1)

=(sinAcosA) /cosA

=sinA

Answered by Anonymous
12

\;\;\underline{\textbf{\textsf{ Given:-}}}

 \sf \dfrac{ \sec A }{\tan A +  \cot A}

\;\;\underline{\textbf{\textsf{ To Find :-}}}

 \sf Value \:  of  \: \dfrac{ \sec A }{\tan A +  \cot A}

\;\;\underline{\textbf{\textsf{ Solution :-}}}

\underline{\:\textsf{Given  that :}}

 \sf  \dfrac{ \sec A }{\tan A +  \cot A}

\underline{\:\textsf{Then:}}

 \sf \dashrightarrow  \dfrac{ \sec A }{\tan A +  \cot A}

 \sf \dashrightarrow  \dfrac{ \sec A }{ \dfrac{ \sin A}{\cos A} +  \dfrac{ \cos A}{\sin A}}

\qquad\qquad\qquad

 \sf \dashrightarrow  \dfrac{ \sec A }{ \dfrac{ {\sin}^{2} A +  {\cos}^{2}  A }{\cos A \sin A } }

 \sf \dashrightarrow \dfrac{ \sec A }{ \dfrac{ {\sin}^{2} A +  {\cos}^{2}  A }{\cos A \sin A } }

 \sf \dashrightarrow  \dfrac{ \sec A }{ \dfrac{1}{\cos A \sin A } }

 \sf \dashrightarrow \sec A  \times  \dfrac{\cos A \sin A}{1}

 \sf  \dashrightarrow \sec A  \times \cos A \sin A

 \sf  \dashrightarrow  \dfrac{1}{\cos A} \times \cos A \sin A

 \sf \dashrightarrow   \dfrac{1}{ \cancel{\cos A}} \times \cancel{ \cos A} \sin A

 \sf \dashrightarrow  1 \times \sin A

 \sf  \dashrightarrow  \sin A

\;\;\underline{\textbf{\textsf{ Hence-}}}

 \therefore{ \sf \dfrac{ \sec A }{\tan A +  \cot A} =  \sin A }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\;\;\underline{\textbf{\textsf{ Need to know  :-}}}

 \sf{ tanA=  \dfrac{sinA}{cosA} }

 \sf{ cotA=  \dfrac{cosA}{sinA} }

 \sf{ secA=  \dfrac{1}{cosA} }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions
Math, 7 months ago