(secA+tanA_ 1)( secA_ tanA+ 1)= 2tanA
Answers
Answered by
4
Hello friend
------------------------------------------------------------------------------------------------------------
Given
(sec A+tanA-1)( secA-tanA+ 1)= 2tanA
LHS (sec A+tanA-1)( secA-tanA+ 1)
=> sec²A-secAtanA+secA+tanAsecA-tan²A+tanA-secA+tanA
=> sec²A-tan²A+2tanA-1
[ ∴ sec²A-tan²A=1]
=> 1+2tanA-1
=2tanA
RHS = 2tanA
Hence proved ∴ LHS=RHS
-----------------------------------------------------------------------------------------------------------------------
hope it's help u :))
------------------------------------------------------------------------------------------------------------
Given
(sec A+tanA-1)( secA-tanA+ 1)= 2tanA
LHS (sec A+tanA-1)( secA-tanA+ 1)
=> sec²A-secAtanA+secA+tanAsecA-tan²A+tanA-secA+tanA
=> sec²A-tan²A+2tanA-1
[ ∴ sec²A-tan²A=1]
=> 1+2tanA-1
=2tanA
RHS = 2tanA
Hence proved ∴ LHS=RHS
-----------------------------------------------------------------------------------------------------------------------
hope it's help u :))
Answered by
0
Similar questions