Chemistry, asked by sanjana1105, 7 months ago

(secA + tanA) (1-sinA) =cos A
prove​

Answers

Answered by Anonymous
1

(sec A + tan A)(1 - sin A) = cos A

Explanation:

Given that,

Prove that → (sec A + tan A)(1 - sin A) = cos A.

LHS :

\sf \implies (\sec\:A + \tan\:A)(1-\sin\:A)

  • sec A = 1/cos A
  • tan A = sin A/cos A

\sf \implies \bigg ( \cfrac{1}{\cos\:A} + \cfrac{\sin\:A}{\cos\:A} \bigg )(1-\sin\:A)

\sf \implies \bigg ( \cfrac{1 + \sin\:A}{\cos\:A} \bigg)(1-\sin\:A)

\sf \implies \bigg ( \cfrac{(1 + \sin\:A)(1-\sin\:A)}{\cos\:A} \bigg )

  • (a + b)(a - b) = a² - b²

\sf \implies \bigg ( \cfrac{(1)^{2} - (\sin\:A)^{2}}{\cos\:A} \bigg )

\sf \implies \bigg ( \cfrac{1 - \sin^{2}\:A}{\cos\:A} \bigg )

  • 1 - sin² A = cos² A

\sf \implies \bigg( \cfrac{\cancel{cos^{2}\:A}}{\cancel{\cos\:A}} \bigg)

\sf \implies \cos\:A \tt\green{ \:  \:  = RHS}

☯ Since, LHS = RHS.

∴ Hence, it was proved.

More Information :

\boxed{\begin{minipage}{7 cm}  Trigonometric Identities : \\ \\$\sin^{2}\theta + cos^{2}\theta = 1 \\ \\ 1 + tan^{2}\theta = sec^{2}\theta \\ \\1 + cot^{2}\theta=\text{cosec}^2\, \theta$ \end{minipage}}

______________________________________________________

Similar questions