Math, asked by khushi3eg, 1 year ago

(secA-tanA)²(1+sinA)=1-sinA

Answers

Answered by varnitsinghal2pai35j
42
this is the correct answer.
I hope you understand
Attachments:
Answered by arindambhatt987641
17

Step-by-step explanation:

Given question is to prove

(secA-tanA)^2(1+sinA)=1-sinA

LHS\ =\ (secA-tanA)^2(1+sinA)

        =\ (sec^2A+tan^2A-2secA.tanA)(1+sinA)

        =\ (\dfrac{1}{cos^2A}+\dfrac{sin^2A}{cos^2A}-2.\dfrac{1}{cosA}.\dfrac{sinA}{cosA})(1+sinA)

        =\ \dfrac{1+sin^2A-2.sinA.cosA}{cos^2A}.(1+sinA)

        =\ \dfrac{(1-sinA)^2}{1-sin^2A}.(1+sinA)

        =\ \dfrac{(1-sinA)^2(1+sinA)}{(1-sinA)(1+sinA)}

        =\ 1-sinA

RHS\ =\ 1-sinA

Hence, we can see that

LHS = RHS

Hence the given equations are proved.

Similar questions