(secA+tanA) (secB+tanB)(secC+tanC)=(secA-tanA)(secB-tanB)(secC-tanC). Than prove that each of the side is equal to +-1
Answers
Answered by
6
L.H.S. (secA+tanA)(secB+tanB)(secC+tanC) = (secA-tanA)(secB-tanC)(secC-tanC)
Multiply both sides by (secA-tanA)(secB-tanC)(secC-tanC) that is RHS
(secA+tanA)(secA-tanA)(secB+tanB)(secB-tanC)(secC+tanC)(secC-tanC) = [(secA-tanA)(secB-tanC)(secC-tanC)]2
or (sec2A-tan2A)(sec2B-tan2C)(sec2C-tan2C) = [(secA-tanA)(secB-tanC)(secC-tanC)]2
or 1 = [(secA-tanA)(secB-tanC)(secC-tanC)]2 [since sec2A-tan2A = 1 ]
or +- 1 = [(secA-tanA)(secB-tanC)(secC-tanC)
therefore RHS = +-1
Similarly LHS = +-1
Multiply both sides by (secA-tanA)(secB-tanC)(secC-tanC) that is RHS
(secA+tanA)(secA-tanA)(secB+tanB)(secB-tanC)(secC+tanC)(secC-tanC) = [(secA-tanA)(secB-tanC)(secC-tanC)]2
or (sec2A-tan2A)(sec2B-tan2C)(sec2C-tan2C) = [(secA-tanA)(secB-tanC)(secC-tanC)]2
or 1 = [(secA-tanA)(secB-tanC)(secC-tanC)]2 [since sec2A-tan2A = 1 ]
or +- 1 = [(secA-tanA)(secB-tanC)(secC-tanC)
therefore RHS = +-1
Similarly LHS = +-1
PrincessNancy:
Thank you so much
Answered by
1
Here we have sec=1/cos, by
Similar questions