CBSE BOARD X, asked by PrincessNancy, 1 year ago

(secA+tanA) (secB+tanB)(secC+tanC)=(secA-tanA)(secB-tanB)(secC-tanC). Than prove that each of the side is equal to +-1

Answers

Answered by gravitation1
6
  L.H.S. (secA+tanA)(secB+tanB)(secC+tanC) = (secA-tanA)(secB-tanC)(secC-tanC)
  Multiply both sides by (secA-tanA)(secB-tanC)(secC-tanC) that is RHS
(secA+tanA)(secA-tanA)(secB+tanB)(secB-tanC)(secC+tanC)(secC-tanC) = [(secA-tanA)(secB-tanC)(secC-tanC)]2
or (sec2A-tan2A)(sec2B-tan2C)(sec2C-tan2C) = [(secA-tanA)(secB-tanC)(secC-tanC)]2
or 1 = [(secA-tanA)(secB-tanC)(secC-tanC)]2      [since sec2A-tan2A = 1 ]
or +- 1 = [(secA-tanA)(secB-tanC)(secC-tanC)
therefore RHS = +-1
Similarly LHS = +-1

PrincessNancy: Thank you so much
gravitation1: follow me please
PrincessNancy: ok
Answered by ribhumandal197p48c1w
1
Here we have sec=1/cos, by
Similar questions