Math, asked by sawan9863, 1 year ago

SecO + tanO / secO - tanO = 1+sinO/ cosO whole square

Answers

Answered by mysticd
4

Answer:

\frac{secO+tanO}{secO-tanO}=\left(\frac{1+sinO}{cosO}\right)^{2}

Step-by-step explanation:

LHS =\frac{secO+tanO}{secO-tanO}\\=\frac{(secO+tanO)(secO+tanO)}{(secO-tanO)(secO+tanO)}\\=\frac{\left(secO+tanO\right)^{2}}{sec^{2}O-tan^{2}O}

=\frac{\left(secO+tanO\right)^{2}}{1}

=\left(\frac{1}{cosO}+\frac{sinO}{cosO}\right)^{2}\\=\left(\frac{1+sinO}{cosO}\right)^{2}\\=RHS

Therefore,

\frac{secO+tanO}{secO-tanO}=\left(\frac{1+sinO}{cosO}\right)^{2}

•••♪

Similar questions