Math, asked by LISHAN7477, 10 months ago

Secø+tanø=x then find sinø

Answers

Answered by MrityunjaySharmaa
4

Given: secθ + tanθ = x -->(i)

We know that: sec²θ = 1 + tan²θ

=> sec²θ - tan²θ = 1

=>(secθ + tanθ)(secθ - tanθ)= 1

=> secθ - tanθ = \frac{1}{secθ + tanθ}

=> secθ - tanθ = \frac{1}{x} --->(ii)

Adding (i) and (ii):

=> 2secθ = x + \frac{1}{x}

=>2secθ = \frac{x^2 + 1}{x}

=> \frac{2}{cosθ} = \frac{x^2 + 1}{x}

=> cosθ = \frac{2x}{x^2 + 1}

Using the identity: Sin²θ + Cos²θ = 1

=> sinθ = \sqrt{1 - cos^2θ}

=> sinθ = \sqrt{1 - (\frac{2x}{x^2 + 1})^2}

=> sinθ = \sqrt\frac{x^4 + 1 + 2x^2 - 4x^2}{(x^2 + 1)^2}

=> sinθ = \sqrt\frac{x^4 + 1 - 2x^2}{(x^2 + 1)^2}

=> sinθ = \sqrt\frac{(x^2 - 1)^2}{(x^2 + 1)^2}

=> \bold\color{red}\fbox{sinθ = \frac{x^2 - 1}{x^2 + 1}}

Similar questions