Math, asked by nitinthakurkt, 11 months ago

SecQ + tanQ) (1-sinQ)
=
cos​

Answers

Answered by rani49035
5

Answer:

(secQ + tanQ)(1-sinQ) = cosQ

LHS = (1/cosQ +sinQ/cosQ)(1-sinQ)

=( 1+sinQ/cosQ)(1-sinQ)

= 1-sin^2Q/cosQ

=cos^2Q/cosQ

= cosQ

hope this will help you

Answered by kaushik05
27

  \huge \red{\mathfrak{solution}}

To prove :

 \boxed{ \bold{(sec \theta   + tan  \theta)( 1 - sin \theta) = cos \theta}}

LHS

 \leadsto \: ( \sec \theta +tan \theta)(1 - sin \theta) \\  \\  \leadsto \: ( \frac{1}{cos \theta}  +  \frac{sin \theta}{cos \theta} )(1 - sin \theta) \\  \\  \leadsto \: ( \frac{1 + sin \theta}{cos \theta} )(1 - sin \theta) \\  \\  \leadsto \:  \frac{1 -  {sin}^{2} \theta }{cos \theta}  \\  \\   \leadsto \:   \frac{ {cos}^{2} \theta }{cos \theta}  \\  \\  \leadsto \cancel \frac{ {cos}^{2}  \theta}{cos \theta} cos \theta \\  \\  \leadsto \: cos \theta

LHS= RHS

 \huge \boxed { \green{ \bold{proved}}}

FORMULA USED:

 \tan( \alpha )  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \\  \\ 1 -  {sin}^{2}  \alpha  =  { \cos}^{2}  \alpha

Similar questions