Math, asked by kia1305, 1 year ago

sectheta + tantheta = m , show that m^2- 1 ÷ m^2+1​


jyotishreechakrabort: m^2-1/m^2+1 then what to prove?
sarahcecilphilips: Pls
sarahcecilphilips: Sorry... Pls rate my answer

Answers

Answered by sarahcecilphilips
3

Answer:

Step-by-step explanation:

secA+tanA = M

Square both sides,

sec^2+tan^2+2secAtanA = M^2

So,

(m^2-1)/(m^2+1) =

(2tan^2A+2secAtanA)/(2sec^2A+2secAtanA)

= (tan^2A+secA tanA)/(sec^2A+secA tanA)

= (sin^2A+sinA)/(1+sinA)

= sinA

Hope helps....

Similar questions