sectheta + tantheta = m , show that m^2- 1 ÷ m^2+1
jyotishreechakrabort:
m^2-1/m^2+1 then what to prove?
Answers
Answered by
3
Answer:
Step-by-step explanation:
secA+tanA = M
Square both sides,
sec^2+tan^2+2secAtanA = M^2
So,
(m^2-1)/(m^2+1) =
(2tan^2A+2secAtanA)/(2sec^2A+2secAtanA)
= (tan^2A+secA tanA)/(sec^2A+secA tanA)
= (sin^2A+sinA)/(1+sinA)
= sinA
Hope helps....
Similar questions