Sectheta + tantheta = p .
show that
p2 - 1 / p2+ 1 = sintheta....
please prove it...
Answers
Answered by
5
Given : secθ + tanθ = p
To Prove : p² + 1 / p² + 1 = sinθ
Proof :
LHS
= p² + 1 / p² + 1
= (secθ + tanθ)² - 1 / (secθ + tanθ)² + 1
= sec²θ + tan²θ + 2 secθ tanθ - 1 / sec²θ + tan²θ + 2 secθ tanθ + 1
= (sec²θ 1) + tan² θ + 2 secθ tanθ / (tan² θ + 1) + sec² θ + 2 secθ tanθ
= tan²θ + tan² θ + 2 secθ tanθ / sec²θ + sec²θ + 2 secθ tanθ
= 2 tan²θ + 2 secθ tanθ / 2 sec² θ + 2 secθ tanθ
= 2 tanθ (tanθ + secθ) / 2 secθ (tanθ + secθ)
= tanθ / secθ
= (sinθ/ cosθ) / (1/cosθ)
= sinθ
= RHS
Hence proved.
I hope it help you ☺️☺️
To Prove : p² + 1 / p² + 1 = sinθ
Proof :
LHS
= p² + 1 / p² + 1
= (secθ + tanθ)² - 1 / (secθ + tanθ)² + 1
= sec²θ + tan²θ + 2 secθ tanθ - 1 / sec²θ + tan²θ + 2 secθ tanθ + 1
= (sec²θ 1) + tan² θ + 2 secθ tanθ / (tan² θ + 1) + sec² θ + 2 secθ tanθ
= tan²θ + tan² θ + 2 secθ tanθ / sec²θ + sec²θ + 2 secθ tanθ
= 2 tan²θ + 2 secθ tanθ / 2 sec² θ + 2 secθ tanθ
= 2 tanθ (tanθ + secθ) / 2 secθ (tanθ + secθ)
= tanθ / secθ
= (sinθ/ cosθ) / (1/cosθ)
= sinθ
= RHS
Hence proved.
I hope it help you ☺️☺️
Aasthakatheriya1:
mrk it as a brainliest ans
Similar questions