Math, asked by Parul678, 1 year ago

Sectheta + tantheta = p .

show that

p2 - 1 / p2+ 1 = sintheta....


please prove it...

Answers

Answered by Aasthakatheriya1
5
Given : secθ + tanθ = p

To Prove : p² + 1 / p² + 1 = sinθ

Proof :

LHS

= p² + 1 / p² + 1

= (secθ + tanθ)² - 1 / (secθ + tanθ)² + 1

= sec²θ + tan²θ + 2 secθ tanθ - 1 / sec²θ + tan²θ + 2 secθ tanθ + 1

= (sec²θ 1) + tan² θ + 2 secθ tanθ / (tan² θ + 1) + sec² θ + 2 secθ tanθ

= tan²θ + tan² θ + 2 secθ tanθ / sec²θ + sec²θ + 2 secθ tanθ

= 2 tan²θ + 2 secθ tanθ / 2 sec² θ + 2 secθ tanθ

= 2 tanθ (tanθ + secθ) / 2 secθ (tanθ + secθ)

= tanθ / secθ

= (sinθ/ cosθ) / (1/cosθ)

= sinθ

= RHS

Hence proved.
I hope it help you ☺️☺️


Aasthakatheriya1: mrk it as a brainliest ans
Similar questions