Math, asked by rishirukhiyana, 3 months ago

SECTION
34) Find the value of a and b , if 3+4 root2 divided by 3-4root 2 =a +b root2

Answers

Answered by Anonymous
0

GIVEN :-

 \\  \sf \:  \dfrac{3 + 4 \sqrt{2} }{3 - 4 \sqrt{2} }  = a + b \sqrt{2}  \\  \\

TO FIND :-

  • Value of a and b.

 \\

SOLUTION :-

 \\  \sf \:  \dfrac{3 + 4 \sqrt{2} }{3 - 4 \sqrt{2} }  \\

We will rationalise the denominator.

Rationalising factor is (3 + 4√2).

So, multiplying and dividing numerator and denominator by (3 + 4√2),

 \\   \implies\sf \:  \dfrac{3 + 4 \sqrt{2} }{3 - 4 \sqrt{2} }  \times  \dfrac{3 + 4 \sqrt{2} }{3 + 4 \sqrt{2} }  \\

In denominator ,

(a-b)(a+b) = a² - b²

  • a = 3
  • b = 4√2

 \\  \implies \sf \:  \dfrac{(3 +  {4 \sqrt{2}) }^{2} }{ {3}^{2}  - (4 { \sqrt{2} )}^{2} }  \\

In numerator,

(a + b)² = a² + b² + 2ab

  • a = 3
  • b = 4√2

 \\  \implies \sf \:  \dfrac{ {3}^{2} + ( {4 \sqrt{2} ) }^{2} + 2(3)(4 \sqrt{2} )  }{9 - 32}  \\  \\  \implies \sf \:  \dfrac{9 + 32 + 24 \sqrt{2} }{ - 23}  \\  \\  \implies \sf \:  \dfrac{41 + 24 \sqrt{2} }{ - 23}  \\  \\   \implies \sf \:   - \dfrac{ 41}{23}  -  \dfrac{24 \sqrt{2} }{23}  \\  \\

This is in the form of a + b√2.

 \\  \implies \sf \:  \dfrac{ - 41}{23}  -  \dfrac{24 \sqrt{2} }{23}  = a + b \sqrt{2}  \\

 \\  \therefore     {\underline{\underline{\boxed{ \mathfrak{a =  \frac{ - 41}{23} \:  \:  \:  \:  \:  \:  \:  \:  \: b =  \frac{ - 24}{23}  }}}}} \\ \\

MORE IDENTITIES :-

★ (a-b)² = a² + b² - 2ab

★ (a+x)(a+y) = a² + (x+y)a + xy

★ (a+b)³ = a³ + 3a²b + 3ab² + b³

★ (a-b)³ = a³ - 3a²b + 3ab² - b³

Similar questions