Math, asked by gauravsharma81475, 4 months ago

SECTION C EACH HAVING 3
Q.17 The mean of five numbers is 27. If one more number is included, then the mean is 26. Find the
included number.​

Answers

Answered by mathdude500
2

\large\underline\purple{\bold{Solution :-  }}

\tt \: Let  \: the \:  five \:  observations \:  be \:  x_1, x_2, x_3, x_4, x_5

\tt \:  Mean \:  of  \: 5  \: observation \:  is  \: 27

\tt \:  Using  \: Formula

\bf \:Mean = \dfrac{Sum  \: of \:  observations}{Number \:  of \:  observations }

\tt \:  \longrightarrow \: 27 = \dfrac{x_1 +  x_2 + x_3 +  x_4 + x_5}{5}

\tt \:  \longrightarrow \: x_1 +  x_2 + x_3 +  x_4 + x_5 = 27 \times 5

\tt \:  \longrightarrow \: x_1 +  x_2 + x_3 +  x_4 + x_5 = 135 -  -   - (i)

\tt \:   \boxed{ \purple{\tt \:   Let \:  the \:  included  \: number \:  be \:  x_6}}

\begin{gathered}\bf\red{According \: to \: statement}\end{gathered}

 \tt \:  \longrightarrow \: Mean \:  of  \: 6  \: observation \:  is  \: 26.

\tt \:  \longrightarrow \: Using \:  Formula

\bf \:Mean = \dfrac{Sum  \: of \:  observations}{Number \:  of \:  observations }

\tt \:  \longrightarrow \: 26 = \dfrac{x_1 +  x_2 + x_3 +  x_4 + x_5 + x_6}{6}

\tt \:  \longrightarrow \: x_1 +  x_2 + x_3 +  x_4 + x_5 + x_6 = 6 \times 26

\tt \:  \longrightarrow \: 135 + x_6 = 156

\tt\implies \: \large \boxed{ \purple{\tt \: x_6 = 21 }}

Similar questions