(secx-tanx)^(2)=(1-sinx)/
(1+sinx)
Answers
Answered by
0
Answer:
girders and the rest is it still does anyone else I
Answered by
3
Step-by-step explanation:
Explanation:
#(1+sinx)/(1-sinx)=(secx+tanx)^2#
Right Side #=(secx+tanx)^2#
#=(secx+tanx)(secx+tanx)#
#=sec^2x+2secxtanx+tan^2x#
#=1/cos^2x +2*1/cosx *sinx/cosx +sin^2x/cos^2x#
#=(1+2sinx+sin^2x)/cos^2x#
#=((1+sinx)(1+sinx))/(1-sin^2x)#
#=((1+sinx)(1+sinx))/((1+sinx)(1-sinx))#
#=(1+sinx)/(1-sinx#
#=# Left Side
or
Explanation:
#{1+sin x}/{1-sin x} = {1+sin x}/{1-sin x} times {1+sin x}/{1+sin x} = {(1+sin x)^2}/{1-sin^2 x} = {(1+sin x)^2}/{cos^2x} = ({1+sin x}/{cos x})^2 = (sec x + tan x)^2#
Similar questions