secX+tanX=P prove that sinX=(p^2-1)/(p^2+1)
Answers
Answered by
3
Step-by-step explanation:
secA+tanA=p______(1)
sec²A-tan²A=1
(secA+tanA)(secA-tanA)=1
p(secA-tanA)=1
secA-tanA=1/p_____(2)
(1)+(2)
secA+tanA+secA-tanA=p+1/p
2secA=(p²+1)/p
secA=(p²+1)/2p
(1)-(2)
secA+tanA-(secA-tanA)=p-1/p
secA+tanA-secA+tanA=(p²-1)/p
2tanA=(p²-1)/p
tanA=(p²-1)/2p
tanA/secA=(p²-1)/2p÷(p²+1)/2p
sinA=(p²-1)/(p²+1)
Similar questions