Math, asked by Govinda143, 11 months ago

Seg AB and seg DC are perpendicular to seg bc. seg ac and seg bd intersect each other at P. seg PQ perpendicular to seg BC. AB=x, PQ=y, DC=z. Prove that:1/x+1/z=1/y​

Answers

Answered by MaheswariS
4

\text{In $\triangle{BQP}$}

tan\theta_1=\frac{y}{BQ}......(1)

\text{In $\triangle{BCD}$}

tan\theta_1=\frac{z}{BC}......(2)

\text{In $\triangle{PQC}$}

tan\theta_2=\frac{y}{QC}......(3)

\text{In $\triangle{ABC}$}

tan\theta_2=\frac{x}{BC}......(4)

\text{Now,}

BC=BQ+QC

\text{Using (1) and (3)}

BC=\frac{y}{tan\theta_1}+\frac{y}{tan\theta_2}

\text{Using (2) and (4)}

BC=\frac{y}{z/BC}+\frac{y}{x/BC}

BC=\frac{y\;BC}{z}+\frac{y\;BC}{x}

\implies\;1=\frac{y}{z}+\frac{y}{x}

\implies\;1=y[\frac{1}{z}+\frac{1}{x}]

\implies\boxed{\bf\frac{1}{y}=\frac{1}{x}+\frac{1}{z}}

Attachments:
Similar questions