Math, asked by shivanshbhatt0p9zujb, 10 months ago

Senior Secondary Question
Using matrices, solve the following system of equations:
x+y+z=2 , 2x-y=3 , 2y+z=0

Answers

Answered by Rohit18Bhadauria
5

Given:

3 equations

  • x+y+z=2
  • 2x-y=3
  • 2y+z=0

To Find:

  • Solution of given equations or value of x, y and z

Solution:

Given equations can be written as

x+y+z=2

2x-y+(0)z=3

(0)x+2y+z=0

We can also write above equations as

A=XB

where,

A=\left[\begin{array}{ccc}1&1&1\\2&-1&0\\0&2&1\end{array}\right]

B=\left[\begin{array}{c}2\\3\\0\end{array}\right]

X=\left[\begin{array}{c}x\\y\\z\end{array}\right]

We know that,

\longrightarrow\boxed{\pink{X=A^{-1}B}}

\longrightarrow\sf{A^{-1}=\dfrac{adj(A)}{\mid A\mid}}

  • Firstly we have to find adjoint of matrix A

For that we have to find cofactor matrix of A

Let cofactor matrix of A be C

So,

C=\left[\begin{array}{ccc}-1&-2&4\\1&1&-2\\1&2&-3\end{array}\right]

Now, transpose of C is equal to adjoint of matrix A

i.e. \sf{adj(A)=C^{T}}

\sf{adj(A)=\left[\begin{array}{ccc}-1&1&1\\-2&1&2\\4&-2&-3\end{array}\right]}

Also, here |A|= 1

Now,

\rightarrow\sf{A^{-1}=\dfrac{adj(A)}{\mid A\mid}}

\rightarrow\sf{A^{-1}=\dfrac{1}{1} \left[\begin{array}{ccc}-1&1&1\\-2&1&2\\4&-2&-3\end{array}\right]}

\rightarrow\sf{A^{-1}=\left[\begin{array}{ccc}-1&1&1\\-2&1&2\\4&-2&-3\end{array}\right]}

Now,

\longrightarrow\sf{\pink{X=A^{-1}B}}

\longrightarrow\sf{\left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}-1&1&1\\-2&1&2\\4&-2&-3\end{array}\right]\left[\begin{array}{c}2\\3\\0\end{array}\right]}

\longrightarrow\sf{\left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}1\\-1\\2\end{array}\right]}

So,

x=1, y=-1, z=2

Hence, solution is (1,-1,2).

Similar questions