Math, asked by 12ths, 2 months ago

set \frac{sin (A-B)}{sin (A+B)}=\frac{5}{7}find the value of tan A×cot B

Attachments:

Answers

Answered by Anonymous
104

Answer :-

6

Given :-

 \cfrac{sin(A - B)}{sin(A + B)}  =  \dfrac{5}{7}

To find :-

tanA \times cotB

SOLUTION :-

Firstly lets expand the L.H.S by the formulae

  • sin(A-B) = sinA cosB + sinB cosA
  • sin(A + B) = sinA cosB + sinB cosA

Substituting the values,

 \dfrac{sinA \: cosB \:   -  sinB \: cos \: A}{sinA \: cosB \:   +  sinB \: cosA \: }  =  \dfrac{5}{7}

Do the cross multiplication

(sinAcosB  -  sinB \: cosA)7 = 5(sinAcosB  +  sinB \: cosA)

7sinAcosB  -  7sinB \: cosA = 5sinAcosB   + 5sinB \: cosA

Transposing all terms to L.H.S

7sinAcosB  -  7sinB \: cosA  -  5sinAcosB   -   5sinB \: cosA= 0

Keep like terms together

7sinAcosB -5sinAcosB -7sinBcosA- 5sinBcosA

2sinAcosB \:  - 12sinB \: cos \: A = 0

2sinA \: cosB \:  =  \: 12sinB \: cosA

sinA \: cosB \:  = 6sinB \: cos \: A

 \cfrac{sinA \: cosB}{sinB \: cosA}  = 6

 \cfrac{sinA \: cosB \: }{cosA \: sinB \: } = 6

 \cfrac{sinA}{cosA}  \times  \cfrac{cosB}{sinB}  = 6

From trigonometric relations,

  • sinA/cosA = tanA
  • cosA/sinA = cotA

tan \: A\: cot \: B = 6

So, the Required answer is :-

\red{tan \: A\: cot \: B = 6}

Know more :-

Compound angles:-

cos(A+B) = cosAcosB - sinAsinB

cos(A-B) = cosAcosB + sinAsinB

tan(A+B) = \dfrac{tanA+tanB}{1-tanAtanB}

tan(A-B) = \dfrac{tanA-tanB}{1+tanAtanB}

cot(A+B) = \dfrac{cotB cotA -1}{cotB + cotA}

 cot(A-B) = \dfrac{cotB cotA + 1}{cotB-cotA}

Similar questions