Science, asked by golubaghel, 2 months ago


short note about algae
flagella

Answers

Answered by sakshamawasthi1000
0

Answer:

Algae are a large and diverse group of simple, typically autotrophic organisms. Some have one cell and others have many cells. The largest and most complex marine algae are called seaweeds. They are like plants, and "simple" because they lack the many distinct organs found in land plants.

The flagella of the green alga Chlamydomonas have been used as a model of flagellar structure. A flagellum consists of an axoneme of nine doublet microtubules that surround two central microtubules, with all of the microtubules encased in the plasma membrane. ...

Answered by cutiepie243
0

Answer:

check out this .can u mark me brainliest plsssss

Explanation:

A flagellum is structurally complex, containing more than 250 types of proteins. Each flagellum consists of an axoneme, or cylinder, with nine outer pairs of microtubules surrounding two central microtubules. The axoneme is surrounded by a membrane, sometimes beset by hairs or scales. The outer pairs of microtubules are connected to the axoneme by a protein called nexin. Each of the nine outer pairs of microtubules has an a tubule and a b tubule. The a tubule has numerous molecules of a protein called dynein that are attached along its length. Extensions of dynein, called dynein arms, connect neighbouring tubules, forming dynein cross-bridges. Dynein is involved in converting the chemical energy of adenosine triphosphate (ATP) into the mechanical energy that mediates flagellar movement. In the presence of ATP, dynein molecules are activated, and the flagellum bends as dynein arms on one side of a dynein cross-bridge become activated and move up the microtubule. This creates the power stroke. The dynein arms on the opposite side of the dynein cross-bridge are then activated and slide up the opposite microtubule. This causes the flagellum to bend in the opposite direction during the recovery stroke. Although scientists are working to discover the additional mechanisms that are involved in producing the whiplike movement characteristic of many eukaryotic flagella, the importance of dynein activation in this process has been established.

Similar questions