Math, asked by Ishitarana11, 1 year ago

show by long division method x - 3 is a factor of 2x⁴+3x³-26x²-5x+6

Answers

Answered by shag2
119
as the answer comes in zero therefore it's a factor of px
Attachments:
Answered by hukam0685
7

Yes, x - 3 is a factor of 2x⁴+3x³-26x²-5x+6.

Given:

  • 2 {x}^{4}  + 3 {x}^{3}  - 26 {x}^{2} - 5x + 6
  • (x-3)

To find:

  • Show that x-3 is a factor of 2 {x}^{4}  + 3 {x}^{3}  - 26 {x}^{2} - 5x + 6 by long division.

Solution:

Concept to be used:

If remainder is zero then g(x) is a factor of p(x).

Step 1:

Let

p(x) = 2 {x}^{4}  + 3 {x}^{3}  - 26 {x}^{2} - 5x + 6

and

g(x) = x - 3 \\

Step 2:

Perform long division.

x - 3 \: ) \: 2 {x}^{4}  + 3 {x}^{3}  - 26 {x}^{2} - 5x + 6  \: (2 {x}^{3} + 9 {x}^{2} + x - 2 \\ 2 {x}^{4}  - 6 {x}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \\ ( - ) \:  \:  \: ( + ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  -  -  -  -  -  -  - \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 9 {x}^{3}  - 26 {x}^{2}  \\ 9 {x}^{3}  - 27 {x}^{2}  \\ ( - ) \:  \: ( + ) \:  \:  \:  \\  -  -  -  -  -  -  \\  {x}^{2}  - 5x \\ {x}^{2}  - 3x \\ ( - ) \:  \: ( + ) \\  -  -  -  -  -  -  \\  - 2x + 6 \\  - 2x + 6 \\ ( + ) \:  \: ( - ) \\  -  -  -  -  -  \\ 0 \\  -  -  -  -  -   \\

Here,

Remainder of division is zero.

Thus,

g(x) is a factor of p(x).

________________________________

Learn more:

1) check whether 7+3x is a factor of 3x³+7x

https://brainly.in/question/1198290

2) Check whether p(x) is a multiple of g(x) or not where p(x)=x3-x+1 g(x)=2-3x

https://brainly.in/question/5330763

Similar questions