show by the division method that (2a^2-a+3) is a factor of (6a^5-a^4+4a^3-5a^2-a-15)
Answers
Answer:
6a⁵ - a⁴ + 4a³ - 5a² - a - 15 = ( 2a² - a + 3 ) (3a³ + a² - 2a -5)
Step-by-step explanation:
show by the division method that (2a^2-a+3) is a factor of (6a^5-a^4+4a^3-5a^2-a-15)
3a³ + a² - 2a -5
____________________
2a² - a + 3 _| 6a⁵ - a⁴ + 4a³ - 5a² - a - 15 |_
6a⁵ -3a⁴ + 9a³
_________________
2a⁴ - 5a³ - 5a² - a - 15
2a⁴ - a³ + 3a²
_____________________
-4a³ - 8a² - a - 15
-4a³ + 2a² -6a
________________________
-10a² + 5a - 15
-10a² + 5a - 15
_________________
0
______________________
6a⁵ - a⁴ + 4a³ - 5a² - a - 15 = ( 2a² - a + 3 ) (3a³ + a² - 2a -5)
Answer:
a²-7a-5÷2a+1
can anyone answer in divison method