Show: Sec2x+Cosec2x=Sec2x×Cosec2x 3. If Sec2Ө (1-Sin Ө)(1+Sin Ө)=k , find the value of k.
Answers
Answered by
2
We have to show that sec²x + cosec²x = sec²x × cosec²x
proof : LHS = sec²x + cosec²x
= 1/cos²x + 1/sin²x
[As we know, secx = 1/cosx , 1/sinx = cosecx ]
= (sin²x + cos²x)/(cos²x sin²x)
We know, sin²x + cos²x = 1 from trigonometric identities ,
= 1/(cos²x sin²x)
= 1/cos²x × 1/sin²x
= sec²x × cose²x = RHS
Hence proved.
2. Given sec²θ(1 - sinθ)(1 +sinθ) = k
We have to find the value of k
Solution : we know, (a - b)(a + b) = a² - b²
So, (1 - sinθ)(1 + sinθ) = 1 - sin²θ = cos²θ [ as sin²θ + cos²θ = 1 from trigonometric identities]
Now, sec²θ × cos²θ = k
⇒1/cos²θ × cos²θ = 1 = k
therefore the value of k is 1.
Similar questions