Math, asked by bhuvan923, 10 months ago

show solution no one direct answer
I also know the answer but
I want solution

Attachments:

Answers

Answered by Anonymous
1

It's too simple dear

Just do this and nothing ,

a = [ (x^2 + y^2)^1/2 + (x^2 - y^2)^1/2 ] / [ (x^2 + y^2)^1/2 - (x^2 - y^2)^1/2 ]

So

a * [ (x^2 + y^2)^1/2 - (x^2 - y^2)^1/2 ] = [ (x^2 + y^2)^1/2 + (x^2 - y^2)^1/2 ]

a*(x^2 + y^2)^1/2 - a*(x^2 - y^2)^1/2 = (x^2 + y^2)^1/2 + (x^2 - y^2)^1/2

(a - 1)*(x^2 + y^2)1/2 =(a + 1) *(x^2 - y^2)^1/2

Now square both sides

(a - 1)^2 * (x^2 + y^2) = (a + 1)^2 * (x^2 - y^2)

Expand the equation

(a^2x^2) + a^2y^2 - 2ax^2 - (2ay^2) + (x^2) + y^2 = (a^2x^2) - a^2y^2 + 2ax^2 - (2ay^2) + (x^2) - y^2

Terms in brackets are canceled

a^2y^2 - 2ax^2 + y^2 = - a^2y^2 + 2ax^2 - y^2

So ,

2 a^2y^2 - 2 (2ax^2) + 2 y^2 = 0

a^2y^2 - (2ax^2) + y^2 = 0

a^2y^2 = (2ax^2) + y^2

a^2 = [ (2ax^2) - y^2 ] / y^2

= 2ax^2 / y^2 - 1

a^2 + 1 = 2ax^2 / y^2

( a^2 + 1)/a = 2x^2 / y^2

Now a + 1 / a = ( a^2 + 1)/a

= 2x^2 / y^2

So option (D) is correct

Answered by an IIT JEE ASPIRANT and all India mathematics OLYMPIAD TOPPER in class 10th

Answered by Anonymous
7

Solution :-

 \sf a =  \dfrac{ \sqrt{ {x}^{2}  +  {y}^{2} } +  \sqrt{ {x}^{2} -  {y}^{2}  }  }{ \sqrt{ {x}^{2}  +  {y}^{2} }  -  \sqrt{ {x}^{2} -  {y}^{2}  } }  \\

To solve first make the question into simpler one.

Let us assume

  • √( x² + y² ) = p

  • √(x² - y² ) = q

Substituting the assumed values in the equation

 \implies \sf a = \dfrac{p + q}{p - q}

Now, a + 1/a

 \implies \displaystyle{ \sf a +  \frac{1}{a}  = \frac{p + q}{p - q}   + \frac{1}{ \frac{p + q}{p - q} }  }

 \implies \sf a +  \dfrac{1}{a}  = \dfrac{p + q}{p - q}   +  \dfrac{p - q}{p + q}

Taking LCM

 \implies \sf a +  \dfrac{1}{a}  = \dfrac{p + q(p + q) + p - q(p - q)}{(p - q)(p + q)}

 \implies \sf a +  \dfrac{1}{a}  = \dfrac{(p + q)^{2}  + (p - q)^{2} }{ {p}^{2}  -  {q}^{2} }

[ Because, (p - q)(p + q) = p² - q² ]

 \implies \sf a +  \dfrac{1}{a}  = \dfrac{ {p}^{2} +  {q}^{2}  + 2pq +  {p}^{2} +  {q}^{2} - 2pq    }{ {p}^{2}  -  {q}^{2} }

[ Because (p + q)² = p² + q² + 2pq , (p - q)² = p² + q² - 2pq ]

 \implies \sf a +  \dfrac{1}{a}  = \dfrac{ 2{p}^{2} +  2{q}^{2}  }{ {p}^{2}  -  {q}^{2} }

Now substituting p = √(x² + y²) and q = √(x² - y²)

 \implies \sf a +  \dfrac{1}{a}  = \dfrac{ 2 \big({ \sqrt{ {x}^{2} +  {y}^{2}  } } \big)^{2} +  2 \big( \sqrt{ {x}^{2} -  {y}^{2}  } \big) ^{2}  }{ \big({ \sqrt{ {x}^{2} +  {y}^{2}  } } \big)^{2}   -  \big({ \sqrt{ {x}^{2}  -   {y}^{2}  } } \big)^{2}  }

 \implies \sf a +  \dfrac{1}{a}  = \dfrac{ 2 ( {x}^{2} +  {y}^{2} )  +  2 (  {x}^{2} -  {y}^{2})  }{  {x}^{2} +  {y}^{2}     -  ({x}^{2}  -   {y}^{2})  }

 \implies \sf a +  \dfrac{1}{a}  = \dfrac{ 2{x}^{2} + 2 {y}^{2}   +  2  {x}^{2} - 2 {y}^{2} }{  {x}^{2} +  {y}^{2}     -  {x}^{2}   +  {y}^{2} }

 \implies \sf a +  \dfrac{1}{a}  = \dfrac{ 4{x}^{2} }{ 2 {y}^{2} }

 \implies \sf a +  \dfrac{1}{a}  = \dfrac{ 2{x}^{2} }{  {y}^{2} }

Hence, the value of a + 1/a is 2x²/y²

Similar questions