Math, asked by arora54, 4 months ago


show that 0.3333...= 0.3 can be expressed in the form p/q where p and q are integer and q ≠ 0...​

Answers

Answered by Rubellite
22

\Large{\underbrace{\sf{\orange{Required\:Solution:}}}}

Let's αssume thαt x = 0.3333.

\longrightarrow{\sf{x=0.{\overline{3}}\:\:\:\:\:\:....(1)}}

  • Multiply 10 with both the sides becαuse 1 digit is repeαting.

\longrightarrow{\sf{x\times 10=0.{\overline{3}}\times 10}}

\longrightarrow{\sf{10x=3.{\overline{3}}\:\:\:\:\:\:.....(2)}}

  • Subtract equation (1) from equation (2).

\longrightarrow{\sf{10x-x = 3.{\overline{3}} - 0.{\overline{3}}}}

\longrightarrow{\sf{9x = 3}}

  • Transpose 9 to R.H.D.

\longrightarrow{\sf{x = \dfrac{3}{9}}}

  • Cancel out the numbers.

\longrightarrow{\sf{x =\dfrac{\cancel{3}}{\cancel{9}}}}

\longrightarrow{\sf{x = \dfrac{1}{3}}}

Therefore, \large{\boxed{\mathbf{\orange{0.333\:or\:0.{\overline{3}}= \dfrac{1}{3}}}}}

__________________________

Answered by MissAlison
15

  \huge \sf \red{ \underline{“Solution”}}

  • Since, we don't know what .03 is, let us call it ‘x’and so,

⠀⠀⠀⠀⠀⠀ \sf \to \blue{x =0.3333...}

  • Now, here is, where the trick comes in. look at:-

⠀________________________

Now:-

⠀⠀⠀ \sf \to \pink{ \underline{10x = 10 \times (0.333...) = 3.333...}}

 \sf \to \green{ \underline{3.3333... = 3 + x. \: since \: x = 0.3333...}}

⠀⠀⠀⠀⠀⠀⠀ \sf \to \pink{ \underline{10x = 3 + x}}

  • Solving for x , we get:-

⠀________________________

⠀⠀⠀ \sf \to \red{ \underline{9x = 3.i.e. \: x =  \frac{1}{3}}}

________________________

Similar questions