Math, asked by shivamani15, 1 year ago

show that 1/1-cos theta- 1/1+cos theta=2cosecsquare theta?

Answers

Answered by Anonymous
0
We have to prove that :

 \frac{1}{1 - \cos\alpha } +\frac{1}{1 + \cos \alpha } = 2 { \csc}^{2} \alpha

On taking LHS :

 \frac{1}{1 - \cos \alpha } + \frac{1}{1 + \cos\alpha } \\ \\ = > \frac{1 + \cos \alpha + 1 - \cos\alpha }{(1 - \cos \alpha )(1 + \cos \alpha ) } \\ \\ = > \frac{1 + \cos \alpha + 1 - \cos\alpha }{1 - { \cos }^{2} \alpha } \\ \\ = > \frac{2 }{ { \sin}^{2} \alpha } \\ \\ \: As \: we \: know \: that :\: { \sin }^{2} \alpha + { \cos}^{2} \alpha = 1 \\ \\ = > 2 { \csc }^{2} \alpha = RHS \\ \\ HENCE \: PROVED

Anonymous: i did it correct
Anonymous: but u asked it wrong
shivamani15: 1,/1-costeta-- 1/1+costeta
shivamani15: middile -
shivamani15: middle subtraction sinbol not plus
Anonymous: when in middle (-) it can not be solved bro
shivamani15: it can
shivamani15: once try
Anonymous: ok then kr ke dikha
Anonymous: u can try
Similar questions