Math, asked by jyothinaidu2120, 1 year ago

Show that 1/1+xa-b + 1/1+Xb-a = 1

Answers

Answered by jatin55247
100

Answer:

i hope this answer will help you

Attachments:
Answered by pulakmath007
8

\displaystyle \sf{  \frac{1}{1 +  {x}^{a - b}  }  +  \frac{1}{ 1 + {x}^{b - a} } = 1  } \:  \: is \:  \bf proved

Given :

\displaystyle \sf{  \frac{1}{1 +  {x}^{a - b}  }  +  \frac{1}{ 1 + {x}^{b - a} } = 1  }

To find :

To prove the expression

Solution :

Step 1 of 2 :

Write down the given expression to prove

Here the given expression is

\displaystyle \sf{  \frac{1}{1 +  {x}^{a - b}  }  +  \frac{1}{ 1 + {x}^{b - a} } = 1  }

Step 2 of 2 :

Prove the expression

\displaystyle \sf{  \frac{1}{1 +  {x}^{a - b}  }  +  \frac{1}{ 1 + {x}^{b - a} }  }

\displaystyle \sf{   = \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{a} } }  +  \frac{1}{ 1 +  \frac{ {x}^{a} }{ {x}^{b} }  }  }

\displaystyle \sf{   = \frac{1}{ \frac{  {x}^{a} + {x}^{b} }{ {x}^{a} } }  +  \frac{1}{  \frac{{x}^{b}  +  {x}^{a} }{ {x}^{b} }  }  }

\displaystyle \sf{   = \frac{1}{ \frac{  {x}^{a} + {x}^{b} }{ {x}^{a} } }  +   \frac{1}{ \frac{  {x}^{a} + {x}^{b} }{ {x}^{b} } }    }

\displaystyle \sf{   = \frac{ {x}^{a} }{   {x}^{a} + {x}^{b}  }  +  \frac{ {x}^{b} }{   {x}^{a} + {x}^{b}  }  }

\displaystyle \sf{   = \frac{ {x}^{a} +  {x}^{b}  }{   {x}^{a} + {x}^{b}  }    }

\displaystyle \sf{   = 1}

Hence the proof follows

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the value of x (2) 5) -³×(2/5) ^18=(2/5)^10x

https://brainly.in/question/47348923

2. If (-2)m+1 × (-2)4 = (-2)6 then value of m =

https://brainly.in/question/25449835

Similar questions