Math, asked by gowthamyravi, 1 month ago

show that 1.83 can be expressed in the form of p/q where p and q are integers and q ne 0​

Attachments:

Answers

Answered by 12thpáìn
8

\sf   Let x = 1.8\bar3\\

  • Multiple both sides by 10.

 \\\implies \sf   10x  =   18.\bar3

\implies \sf   10x  =   18 + 0.\bar3

\implies \sf   10x  =   18 +  \dfrac{3}{9}

\implies \sf   10x  =    \dfrac{18 \times 9 + 3}{9}

\implies \sf   10x  =    \dfrac{162 + 3}{9}

\implies \sf   10x  =    \dfrac{165}{9}

\implies \sf  x  =    \dfrac{ \cancel{165}}{ \cancel9}   \times  \dfrac{1}{10}

\implies \sf  x  =    \dfrac{ 55}{3}   \times  \dfrac{1}{10}

\implies \sf  x  =    \dfrac{ 55}{30}    \

\implies \sf  x  =    \dfrac{11}{6} \\  \\

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{1.8\bar3 =  \bf \dfrac{11}{6} }

Answered by Anonymous
7

\Rsh\small\tt\purple{ Solution}

 \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\purple\Rsh\small\tt{Let \:  x = 1.8333}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\Rsh\small\tt\purple{ Multiply \: 10 \: both \: sides}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\purple\Rsh\small\tt{  10x =10 \times  1.8333}

\purple\Rsh\small\tt{  10x =18.333 -  -  -  -  -  -  - eq(1)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\Rsh\small\tt\purple{ Multiply \: 100 \: both \: sides}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\purple\Rsh\small\tt{  100x =100 \times  1.8333}

\purple\Rsh\small\tt{  100x  = 183.333 -  -  -  -  -  - eq(2)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\Rsh\small\tt\purple{ Subtract \: equation \: 1 \: from \: equation \: 2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\purple\Rsh\small\tt{  100x  - 10x = 183.333 - 18.333}

\purple\Rsh\small\tt{  90x = 183.333 - 18.333}

\purple\Rsh\small\tt{ 90x = 165}

\purple\Rsh\tt{  x =  \cancel\frac{165}{90} }

 \small \boxed{\purple\Rsh\tt{  x =  \cancel\frac{33}{18} }}

Similar questions