Math, asked by AbhishekTiktok, 5 months ago

Show that:-
1+cosA/1-cosA=tan2A/(secA-1)2​

Answers

Answered by Anonymous
7

SOLUTION

\bf{L\:H\:S}

\:\:\:\sf \frac{1+ \cos A}{1-\cos A}

=\sf\frac{(1+\cos A)(1-\cos A)}{(1-\cos A)^2} \\

=\sf \frac{(1-\cos^2A)}{{(1-\cos A)^2}}^{}

=\sf \frac{sin^2A}{(1-\cos A)^2}\times \frac{\frac{1}{\cos^2A}}{\frac{1}{\cos^2A}}\\

= \sf \frac{tan^2A}{\frac{1}{\cos^2A}-1}

\therefore{\underline{\boxed{\sf{\frac{\tan^2A}{(\sec^2A-1)^2}}}}}}=\bf R\:H\:S

__________

\tt\colorbox{skyblue}{@StayHigh}

Similar questions