Math, asked by rnkk756, 11 months ago

Show that (1+cot 2theata) (1-cos the ta) (1+cos theta) =1​

Answers

Answered by Anonymous
4

\bold\red{\underline{\underline{Answer:}}}

\bold\green{\underline{\underline{Proof}}}

\bold{L.H.S.=(1+cot^{2} \ theta)(1-cos \ theta)(1+cos \ theta)}

\bold{=(1+cot^{2} \ theta)(1-cos^{2} \ theta)}

\bold{\  (a+b)(a-b)=a^{2}-b^{2}}

\bold{\  (1-cos \ thita)(1+cos \ thita)=(1-cos^{2} \ thita)}

\bold{=(1+cot^{2} \ thita)(1-cos^{2} \ thita)}

\bold{1-cos^{2} \ thita=sin^{2} \ thita)}

\bold{\  (1-cot^{2} \ thita)=cosec^{2} \ thita}

\bold{=(cosec^{2} \ thita)(sin^{2} \ thita)}

\bold{\  cosec^{2}=\frac{1}{sin^{2} \ thita}}

\bold{=(\frac{1}{sin^{2} \ thita})(sin^{2} \ thita)}

\bold{=1}

\bold{=R.H.S.}

\bold\red{Hence, \ proved}

\bold\red{(1+cot^{2} \ thita)(1-cos \ thita)(1+cos \ thita)=1}

Similar questions