Math, asked by Ashau8979, 8 months ago

Show that (1/cot theta)+ cot theta=sec theta×cosec theta

Answers

Answered by BrainlyPopularman
15

Question :

▪︎ Show that :   \\ { \bold{ \dfrac{1}{ \cot( \theta) }  +  \cot( \theta) =  \sec( \theta) . cosec( \theta)}}  \\

ANSWER :

TO PROVE :

  \\ { \bold{ \dfrac{1}{ \cot( \theta) }  +  \cot( \theta) =  \sec( \theta) . cosec( \theta)}}  \\

SOLUTION :

▪︎ Let's take L.H.S. –

  \\ { \bold{  = \dfrac{1}{ \cot( \theta) }  +  \cot( \theta) }}  \\

• We know that –

  \\  \implies{  \boxed{ \bold{   \cot( \theta)  = {  \frac{ \cos( \theta) }{ \sin( \theta) }} }}}  \\

• So that –

  \\ { \bold{  = \dfrac{1}{  \frac{ \cos( \theta) }{ \sin( \theta) } }  + {  \frac{ \cos( \theta) }{ \sin( \theta) }} }}  \\

  \\ { \bold{  = \frac{ \sin( \theta) }{  \cos( \theta) }   + {  \frac{ \cos( \theta) }{ \sin( \theta) }} }}  \\

  \\ { \bold{  = \frac{ \sin ^{2} ( \theta) +  \cos^{2} ( \theta)  }{  \sin( \theta)  .\cos( \theta) } }}  \\

• We know that –

  \\  \to  \:  \:  \: { \bold{   \sin ^{2} ( \theta) +  \cos^{2} ( \theta)  = 1 }}  \\

• So that –

  \\ { \bold{  = \frac{ 1  }{  \sin( \theta)  .\cos( \theta) } }}  \\

• We know that –

  \\  \:  \:  \to{ \bold{   \frac{ 1  }{  \sin( \theta) }  = cosec( \theta) \:  \: and \:  \:  \frac{1}{ \cos( \theta) } =  \sec( \theta)   }}  \\

• So that –

  \\ { \bold{  =  \sec( \theta)   .cosec( \theta)}}  \\

  \\ { \bold{   = R.H.S. \:  \:  \: (Hence \:  \: proved)}}  \\

Answered by Equestriadash
28

\bf To\ prove\ that:\ \sf \Big(\dfrac{1}{cot\ \theta}\Big)\ +\ cot\ \theta\ =\ sec\ \theta\ \times\ cosec\ \theta

\bf Proof:\\\\\\\tt Taking\ the\ Left\ Hand\ Side,\\\\\\\sf \Big(\dfrac{1}{cot\ \theta}\Big)\ +\ cot\ \theta\\\\\\\\\bf \Bigg[cot\ \theta\ =\ \dfrac{sin\ \theta}{cos\ \theta}\Bigg]\\\\\\\\\sf \Bigg(\dfrac{1}{\frac{cos\ \theta}{sin\ \theta}}\Bigg)\ +\ \dfrac{cos\ \theta}{sin\ \theta}\\\\\\\\\dfrac{sin\ \theta}{cos\ \theta}\ +\ \dfrac{cos\ \theta}{sin\ \theta}\\\\\\\\\tt Taking\ the\ LCM,\\\\\\\\\dfrac{sin^2\ \theta\ +\ cos^2\ \theta}{sin\theta\ cos\theta}\\\\\\\\

\bf \Bigg[sin^2\ \theta\ +\ cos^2\ \theta\ =\ 1\Bigg]\\\\\\\\\sf \dfrac{1}{sin\theta\ cos\theta}\\\\\\\\\bf \Bigg[\dfrac{1}{sin\ \theta}\ =\ cosec\ \theta;\ \dfrac{1}{cos\ \theta}\ =\ sec\ \theta\Bigg]\\\\\\\\sec\ \theta\ \times\ \cosec\ \theta\\\\\\\\=\ \tt Right\ Hand\ Side\\\\\\\\\bf Hence\ proved.

Similar questions