Math, asked by shashank12313, 9 months ago

show that (1/secA-tanA)​

Answers

Answered by sadhvpandey2009
1

Step-by-step explanation:

Given LHS = \frac{1}{secA-tanA}

secA−tanA

1

On rationalizing we get,

\frac{1}{secA-tanA} * \frac{secA+tanA}{secA+tanA}

secA−tanA

1

secA+tanA

secA+tanA

\frac{secA+tanA}{(secA-tanA)(secA+tanA)}

(secA−tanA)(secA+tanA)

secA+tanA

\frac{secA+tanA}{sec^2A-tan^2A}

sec

2

A−tan

2

A

secA+tanA

\frac{secA+tanA}{1}

1

secA+tanA

secA+tanA.

LHS = RHS.

Hope this helps!

Answered by kaderultanim
3

Answer:Answer:

LHS=1/secA+tanA

1/secA+tanA*secA-tanA/secA-tanA

secA-tanA/sec^2A-tan^2A

secA-tanA/1

SecA-tanA

LHS=RHS

Step-by-step explanation:

Step-by-step explanation:

Similar questions