show that 1-sin60°/cos60°=tan60°-1/tan60°+1
Answers
Answered by
41
LHS = (1 -sin60°)/cos60°
= (1 - √3/2)/(1/2) = (2-√3)
RHS = ( tan60° -1)/(tan60° +1)
=( √3 -1)/(√3 +1)
=(√3 -1)(√3 -1)/(√3 +1)(√3 -1)
=( √3² +1² -2√3)/(√3²-1)
=( 4-2√3)/(2)
= 2 -√3
LHS = RHS
hence proved
= (1 - √3/2)/(1/2) = (2-√3)
RHS = ( tan60° -1)/(tan60° +1)
=( √3 -1)/(√3 +1)
=(√3 -1)(√3 -1)/(√3 +1)(√3 -1)
=( √3² +1² -2√3)/(√3²-1)
=( 4-2√3)/(2)
= 2 -√3
LHS = RHS
hence proved
Answered by
22
sin 60 = √3/2
cos 60 = 1/2
tan 60 = √3
lhs = (1-sin 60) /cos 60
= (1-√3/2) /(1/2)
= 2-√3
rhs = (tan60 -1) /(tan60 +1)
= (√3-1)/(√3 +1)
= (√3-1) (√3 -1)/[(√3+1)(√3-1)]
=(√3 -1)²/[(√3)² -1²]
= (3+1 -2√3) /(3-1)
=(4 -2√3)/2
=2-√3
therefore
lhs = rhs
cos 60 = 1/2
tan 60 = √3
lhs = (1-sin 60) /cos 60
= (1-√3/2) /(1/2)
= 2-√3
rhs = (tan60 -1) /(tan60 +1)
= (√3-1)/(√3 +1)
= (√3-1) (√3 -1)/[(√3+1)(√3-1)]
=(√3 -1)²/[(√3)² -1²]
= (3+1 -2√3) /(3-1)
=(4 -2√3)/2
=2-√3
therefore
lhs = rhs
Similar questions