Math, asked by PROlearnerO1O1, 5 months ago

show that 1+sinA+cosA/1+cosA-sinA=1+sinA/cosA.​

Answers

Answered by SuitableBoy
14

{\huge{\underline{\underline{\bf{Question:-}}}}}

Q) Show that

  \sf \: \frac{1 + sin \: a + cos \: a}{1 + cos \: a - sin \: a}  =  \frac{1 + sin \: a}{cos \: a}  \\

 \\

{\huge{\underline{\underline{\bf{Answer\checkmark}}}}}

 \\

Take LHS ,

 \rm \:  \frac{1 + sin \: a + cos \: a}{1 + cos \: a - sin \: a}  \\

 \mapsto \rm \:  \frac{(1 + cos \: a) + sin \: a}{(1 + cos \: a) - sin \: a}  \\

Multiply Neumerator and denominator by the conjugate of denominator

 \mapsto \rm \:  \frac{(1 + cos \: a) + sin \: a}{(1 + cos \: a) - sin \: a}  \times  \frac{(1 + cos \: a) +  sin \: a}{(1 + cos \: a) + sin \: a}  \\

 \mapsto \rm \:  \frac{ { \{(1 + cos \: a) + sin \: a \}}^{2} }{ {(1 + cos \: a)}^{2}  -  {sin}^{2}  \: a}  \\

 \mapsto \rm \:  \frac{ {(1 + cos \: a)}^{2}  +  {sin}^{2} \: a + 2(1 + cos \: a)(sin \: a) }{1 +  {cos}^{2} \: a + 2cos \: a  -  {sin}^{2} \: a }  \\

 \mapsto \rm \:  \frac{1 +   \underline{{cos}^{2}  \: a } + 2cos \: a+  \underline{ {sin}^{2}  \: a }+ 2sin \: a(1 + cos \: a)}{  \cancel{sin}^{2}  \: a +  {cos}^{2}  \: a +  {cos}^{2} \: a + 2cos \: a -  \cancel {sin}^{2}   \: a}  \\

In the above step ,

We changed , 1 to sin² a + cos² a .

 \mapsto \rm \:  \frac{2 + 2cos \: a + 2sin \: a(1 + cos \: a)}{2 {cos}^{2}   \: a+ 2cos \: a}  \\

 \mapsto \rm \:  \frac{ \cancel2 \{1 + cos \: a + sin \: a(1 + cos \: a) \}}{ \cancel2( {cos}^{2}  \: a + cos \: a)}  \\

 \mapsto \rm \:  \frac{ \cancel{(1 + cos \: a)}(1 + sin \: a)}{cos \: a \cancel{(1 + cos \: a)} } \\

 \mapsto \rm \:  \frac{1 + sin \: a}{cos \: a}  \\

As you can see , it is equal to RHS .

Hence Proved !!

 \\

_________________________

Know More :

  • cos² x + sin² x = 1
  • 1 + tan² x = sec² x
  • cot² x + 1 = cosec² x
  •  \sf \: sin  \: \theta =  \frac{perpendicular}{hypotenuse \: }  \\
  •  \sf \: cos \theta =  \frac{base}{hypotenuse}  \\
  •  \sf \: tan \theta =  \frac{perp}{base}  \\

Similar questions