Math, asked by sivanandsankula, 3 months ago

show that (1/(tanA+cotA))=cosA.sinA​

Answers

Answered by hariommaurya97
3

from L.H.S

 \frac{1}{( \tanθ + cot θ)}

 =  >  \frac{1}{ \frac {sinθ} { \cosθ  } +  \frac{ \cosθ }{ \sinθ }  }

(tanθ =  \frac{sinθ}{cosθ}  \: and \: cotθ =  \frac{cosθ}{sinθ} )

 =  >  \frac{1}{ \frac{ {sin}^{2}θ +  {cos}^{2} θ }{cosθ.sinθ} }

➠ sin²θ + cos²θ = 1

 =  >  \frac{1}{ \frac{1}{sinθ.cosθ} }

 =  > sinθ.cosθ

 = RHS

Hence proved!

Answered by Vikramjeeth
12

*Question:-

  • show that (1/(tanA+cotA))=cosA.sinA

*Answer:-

  =  > \frac{1}{ \tan(A)  +  \cot(A) }  =  \sin(A)  \cos(A)  \\  \\  =  > LHS =  \frac{1}{ \tan(A) +  \cot(A) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  =  >  \frac{1}{ \frac{ \sin(A) }{ \cos(A) } +  \frac{ \cos(A) }{ \sin(A) }  }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  =  >  \frac{1}{ \frac{ { \sin(A) }^{2} +  { \cos(A) }^{2}  }{  \sin(A)  \cos(A) } }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   =  > \frac{1}{ \frac{1}{ \sin(A) +  \cos(A)  } }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\

Because:-

  • (Sin²A + Cos²A = 1)

Hence:-

  • SinA × CosA = RHS.

Hope it helps you.

Be Brainly.

Similar questions