Math, asked by manasvi1595, 9 months ago

show that √(12+2√27) is an irrational number​

Answers

Answered by anupama1568
0

Answer:

yes

Step-by-step explanation:

( \sqrt{12}  + 2 \sqrt{27} ) \\  \sqrt{2 \times 2 \times 3} + 2 \sqrt{2 \times 2 \times 2 \times 2 \times 3 \times 13 }   \\  \sqrt{2 {}^{2} \times 3 }   + 2 \sqrt{2 {}^{2}  \times 2 {}^{2} \times 3 \times 13 }  \\  \sqrt{2 {}^{2} \times 3 } + 2 \sqrt{2 {}^{2}  \times 2 {}^{2} \times 39 }   \\  \sqrt{2 {}^{2} }   \times  \sqrt{3}  + 2 \sqrt{2 {}^{2} }  \times  \sqrt{2 {}^{2} }  \times  \sqrt{39}  \\ 2 \times  \sqrt{3}  + 4 \times 2 \times  \sqrt{39}  \\  \sqrt{6}  + 8 \times  \sqrt{39}  \\  \sqrt{6}  \times 8 \sqrt{39}

I hope it help you if it correct follow me and like the answer

Similar questions