show that (12/x+2)+(10/x-1)=7/2 can be simplified to give the equation 7x^2-37x-30=0
Answers
Answered by
2
Solution :
12/(x+2 ) + 10/(x-1) = 7/2
= [ 12(x-1)+10(x+2) ]/[(x+2)(x-1) ] = 7/2
= [ 12x - 12+10x+20 ]/[x²-x+2x-2 ] = 7/2
=> (22x + 8)/( x² + x - 2 ) = 7/2
=>[ 2( 11x + 4 )] /( x² + x - 2 ) = 7/2
=> ( 11x + 4 ) = 7( x² + x - 2 )
=> 11x + 4 = 7x² + 7x - 14
=> 0 = 7x² + 7x - 14 - 11x - 4
=> 7x² - 18x - 4 = 0
••••
12/(x+2 ) + 10/(x-1) = 7/2
= [ 12(x-1)+10(x+2) ]/[(x+2)(x-1) ] = 7/2
= [ 12x - 12+10x+20 ]/[x²-x+2x-2 ] = 7/2
=> (22x + 8)/( x² + x - 2 ) = 7/2
=>[ 2( 11x + 4 )] /( x² + x - 2 ) = 7/2
=> ( 11x + 4 ) = 7( x² + x - 2 )
=> 11x + 4 = 7x² + 7x - 14
=> 0 = 7x² + 7x - 14 - 11x - 4
=> 7x² - 18x - 4 = 0
••••
Similar questions
English,
7 months ago
History,
7 months ago
Music,
1 year ago
Political Science,
1 year ago
Math,
1 year ago