Math, asked by priya5430, 1 year ago

show that 16^99 - 1 = 0 ( mod 437 ) ​

Answers

Answered by halamadrid
0

The proof of 16^{99} - 1  = 0 (mod 437) is given below:

  • To solve this problem, we will be using the following concepts:

         1) a = b (mod n) ⇒ a^{x} = b^{x} (mod n)

         2) If a = b (mod p) and a = b (mod q) where GCD (p , q) = 1, then

             a = b(mod pq)

  • We know that 437=19×23 and GCD (19 , 23) = 1

        Now,

        (−3)³ = −8(mod 19)

        ⇒ (-3)^{9} = 1 (mod 19)

        ⇒ 16^{9} = 1 (mod 19)

        ⇒ 16^{99} = 1 (mod 19)      ....................(I)

  • Also,

        (−7)² = 3 ( mod 23)

        ⇒ ( -7^{4}) = 9 (mod 23)

        ⇒ (-7^{8}) = 12 (mod 23)

        ⇒ (16^{11} ) =  1 (mod 23)

        ⇒ 16^{99} = 1 (mod 23)       ....................(II)

  • From (I) and (II)

       16^{99} = 1 (mod 19x23)  = 1 (mod 437)

       ⇒ 16^{99} - 1  = 0 (mod 437)

Hence Proved.

#SPJ3

Similar questions