Math, asked by tanishkdevil, 8 months ago

Show that 2/(√5+√3) + 1/(√3+√2) − 3/(√5+√2) = 0​

Answers

Answered by parthasial
3

Step-by-step explanation:

Hope it helps....

I haven't done it with LHS and RHS method, I have only solved the LHS part

Attachments:
Answered by pradeepbulandshahar
2

Answer:

0

Step-by-step explanation:

LHS=2/(√5+√3)+1/(√3+√2)-3/(√5+√2)

rationalise this

2/(√5+√3)*(√5-√3)/√5-√3)+1(√3+√2)*(√3-√2)-3/√5+√2)*(√5-√2)

=2(√5-√3)/(√5^2-√3^2)+√3-√2/(√3^2-√2^2)-3(√5-√2)/(√5^2-√2^2)

=2(√5-√3)/5-3+(√3-√2)/3-2-3(√5-√2)/5-2

=2(√5-√3)/2+(√3-√2)-3(√5-√2)/3

=6(√5-√3)+6(√3-√2)-6(√5-√2)

________________________

6

=6(√5-√3+√3-√2-√5+√2)

____________________

6

=0 = RHS

hence proved

Similar questions