Show that 2/(√5+√3) + 1/(√3+√2) − 3/(√5+√2) = 0
Answers
Answered by
3
Step-by-step explanation:
Hope it helps....
I haven't done it with LHS and RHS method, I have only solved the LHS part
Attachments:
Answered by
2
Answer:
0
Step-by-step explanation:
LHS=2/(√5+√3)+1/(√3+√2)-3/(√5+√2)
rationalise this
2/(√5+√3)*(√5-√3)/√5-√3)+1(√3+√2)*(√3-√2)-3/√5+√2)*(√5-√2)
=2(√5-√3)/(√5^2-√3^2)+√3-√2/(√3^2-√2^2)-3(√5-√2)/(√5^2-√2^2)
=2(√5-√3)/5-3+(√3-√2)/3-2-3(√5-√2)/5-2
=2(√5-√3)/2+(√3-√2)-3(√5-√2)/3
=6(√5-√3)+6(√3-√2)-6(√5-√2)
________________________
6
=6(√5-√3+√3-√2-√5+√2)
____________________
6
=0 = RHS
hence proved
Similar questions
History,
4 months ago
Computer Science,
4 months ago
Biology,
8 months ago
Computer Science,
8 months ago
Math,
1 year ago
History,
1 year ago