Math, asked by divya34176, 1 month ago

Show that 2 log 5/8+ log 128/125+ log 5/2=0​

Answers

Answered by VεnusVεronίcα
14

Question :

Show that : 2 log (5/8) + log (128/125) + log (5/2) = 0

 \\

\qquad_____________

 \\

Explaination :

 \tt{ \implies \:LHS : 2 \: log \:  \bigg( \dfrac{5}{8} \bigg)  + log \:  \bigg( \dfrac{128}{125}  \bigg)  + log \: \bigg ( \dfrac{5}{2}  \bigg)}

 \tt \implies \: log \:  \bigg( \dfrac{5}{8}  \bigg) ^{2}  + log \:  \bigg( \dfrac{128}{125} \bigg ) + log \:  \bigg( \dfrac{5}{2}  \bigg) \qquad \qquad  \pmb{ \bigg \lgroup\because \: b.log \: a = log \:  {(a)}^{b} }  \bigg \rgroup

 \tt \implies \: log \:  \bigg (\dfrac{25}{64} \bigg)  + log \:   \:  \bigg(\dfrac{5}{2}  \bigg) + log \:   \bigg(\dfrac{128}{125} \bigg )

 \tt \implies \: log \:  \bigg( \dfrac{25 \times 5}{64 \times 2}  \bigg) + log \:   \bigg( \dfrac{128}{125}  \bigg) \qquad \qquad \pmb{ \bigg \lgroup \because \: log \: a + log \: b = log \: (a \times b) \bigg \rgroup}

 \tt \implies \: log \:  \bigg( \dfrac{125}{128 } \bigg ) + log \:  \bigg( \dfrac{128}{125}  \bigg)

 \tt \implies \: log \:  \bigg( \dfrac{125}{128}  \times  \dfrac{128}{125}  \bigg) \qquad \qquad \pmb{  \bigg \lgroup\because \: log \: a \: + log \: b = log \: (a \times b) \bigg \rgroup }

  \tt\implies \:  log \: \bigg ( \cancel \dfrac{125}{128}  \times  \cancel\dfrac{128}{125}   \bigg)

 \tt \implies \: log \: (1) = 0 \qquad \qquad \pmb{ \bigg \lgroup \because \: log \: (1) = 0 \bigg \rgroup}

 \tt \implies \: 0 = RHS

 \tt \implies \: LhS = RHS

~

Henceforth, proved!

\\

\qquad_____________

\\

N 0 T E : Swipe the screen the from left to right in order to view the answer completely in case you are using the app on your mobile :)

Similar questions