Math, asked by priyanshusharan769, 3 months ago

show that 2 X + 3 y = 7 and 6x-y=2has unique solution

Answers

Answered by llmissworldll
1

Answer:

show that 2 X + 3 y = 7 and 6x-y=2has unique solution

Answered by Anonymous
1

Step-by-step explanation:

Givensystemoflinearequations:

x−y−3=0and2x+3y−7=0

\begin{gathered} Compare \:above \: equations \:with \\a_{1}x+b_{1}y+c_{1} = 0 \:and \:a_{2}x+b_{2}y+c_{2} = 0,\\we \: get \end{gathered}

Compareaboveequationswith

a

1

x+b

1

y+c

1

=0anda

2

x+b

2

y+c

2

=0,

weget

\begin{gathered} a_{1} = 1 , \: b_{1} = -1 , \:c_{1} = -3 \\and \: a_{2} = 2 , \: b_{2} = 3 , \:c_{2} = -7 \end{gathered}

a

1

=1,b

1

=−1,c

1

=−3

anda

2

=2,b

2

=3,c

2

=−7

\frac{a_{1}}{a_{2}} = \frac{1}{2} \: --(1)

a

2

a

1

=

2

1

−−(1)

and \:\frac{b_{1}}{b_{2}} = \frac{-1}{3} \: --(2)and

b

2

b

1

=

3

−1

−−(2)

/* From (1) and (2) */

\implies \blue{\frac{a_{1}}{a_{2}}}\pink { \neq }\blue{ \frac{b_{1}}{b_{2}}}⟹

a

2

a

1

=

b

2

b

1

Therefore.,

\begin{gathered} \green { Given \: system \:of \: equations }\\\green { \:has \: unique \: solution } \end{gathered}

Givensystemofequations

hasuniquesolution

•••♪

Similar questions