Math, asked by sureshaniga, 1 year ago

show that (2x+1),(x-3),(3x+1) are factors of the polynomial 6x^3-13x^2-14x-3

Answers

Answered by KDPatak
12

Answer:

Given:

  expressions  (2x+1),(x-3),(3x+1)

and  polynomial 6x^3-13x^2-14x-3

To prove:

 (2x+1),(x-3),(3x+1) are factors of the polynomial 6x^3-13x^2-14x-3

Solving Question:

We know the factor theorem it says that if 'a' is the factor of the polynomial p(x) then p(a) = 0

  We would use the same formula here to prove.

first find value of 'x'

⇒  2x+1=0

or 2x = -1

or, x = -1/2

second

⇒x-3=0

or, x= 3

Third,

⇒ 3x+1=0

or, 3x = -1

or, x = -1/3

Solution:

 

substitute values of' x'

6x³ -13x² -14x-3

⇒6(-1/2)³ - 13(-1/2)² -14*(-1/2)-3

⇒6((-1/8) -13(1/4) +14/2-3

⇒ -6/8 -13/4+14/2-3

⇒ l.c m = 8

⇒( -6 -26 + 56 -24)/8

⇒ 0 /8

⇒ 0

∴ 2x +1 is a factor

Then take 'x = 3

6x³-13x²-14x-3

⇒ 6(3)³ -13(3)²-14*3 -3

⇒ 162 - 117 - 42 -3

⇒ 162-162

⇒ 0

∴x -3 is a factor.

Then, take x = -1/3

6x³-13x²-14x-3

⇒ 6(-1/3)³ - 13(-1/3)²-14(-1/3) -3

⇒-6/27 -13/9 +14/3 -3

⇒ l.c.m = 27

⇒  (-6 -39 +126 -81)/27

⇒(-126+126)/27

⇒ 0

∴ 3x+1 is a factor.

Hence, (2x+1),(x-3),(3x+1) are factors of the polynomial 6x^3-13x^2-14x-3

Answered by sandeshdevi918
0

Step-by-step explanation:

Hey this is your answer

MARK ME IN BRAINLIST

Attachments:
Similar questions