Math, asked by mohinishiv633, 1 year ago

show that (√3/2 +i/2)3=i​

Answers

Answered by amar200509
7

Answer:

Mark as brainlist ans. Hope it help you all

Attachments:
Answered by pulakmath007
11

\displaystyle \sf{  { \bigg(  \frac{ \sqrt{3} }{2}  +  \frac{i}{2} \bigg)}^{3} = i} \:  \:  \: is \: proved

Given :

\displaystyle \sf{  { \bigg(  \frac{ \sqrt{3} }{2}  +  \frac{i}{2} \bigg)}^{3} = i}

To find :

To prove the expression

Formula :

De Moviers Theorem

\displaystyle \sf{  { (  cos \theta  +  i \sin \theta)}^{n} =cos n\theta  +  i \sin n\theta }

Solution :

Step 1 of 2 :

Write down the given equation to prove

The given equation to prove is

\displaystyle \sf{  { \bigg(  \frac{ \sqrt{3} }{2}  +  \frac{i}{2} \bigg)}^{3} = i}

Step 2 of 2 :

Prove the expression

LHS

\displaystyle \sf{   = { \bigg(  \frac{ \sqrt{3} }{2}  +  \frac{i}{2} \bigg)}^{3} }

\displaystyle \sf{   = { \bigg(   \cos \:  \frac{\pi}{6}   + i \:   \sin \:  \frac{\pi}{6}   \bigg)}^{3} }

\displaystyle \sf{   = { \bigg(   \cos \:  \frac{3\pi}{6}   + i \:   \sin \:  \frac{3\pi}{6}   \bigg)}^{} }

\displaystyle \sf{   = { \bigg(   \cos \:  \frac{\pi}{2}   + i \:   \sin \:  \frac{\pi}{2}   \bigg)}^{} }

\displaystyle \sf{   =0 + i.1 }

\displaystyle \sf{   = i}

= RHS

Hence the proof follows

Similar questions